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figuration, and 9 a function of temperature defined by 
T T ' 

9 = Po J dT' S (C/T") dT", (2) 
To To 

where C is the specific heat. 
From its general definition the free energy satisfies the relation 

F=E-TS, (3) 

where E is internal energy and S is entropy. Denoting time derivatives by means of 
superposed dots, differentiation of (3) yields 

P =E-TS-TS. 

The energy balance (or First Law) can be written as 

Q = E-a;f,;/p. 

(4) 

(5) 

We assume that each element of material responds adiabatically. This means princi­
pally that we neglect heat conduction, a reasonable approximation in the context of 
the wave propagation problem under consideration. Thus, the rate of heat flow, Q, 
is zero and 

E; = a;e;/p. (6) 

The free energy balance then becomes 

P = - ts - TS +a;(ef +ef)/p. (7) 

Here, the rate-of-work of the stresses has been separated into elastic and plastic 
components simply under the formulation of (KG). The elastic work term can be 
decomposed further into dilatational and deviatoric contributions to obtain 

p = - TS - TS +(a; + p)eUp- pee/p +a;ef/p . (8) 

An equivalent expression for F is obtained by differentiating (1) with respect to 
time, making use of the chain rule and the definition (2): 

T 

P = Keeee/po+2Gefef/po-KfJ(T-ToW /po-KfJeeT/po-T S (CfT') dT'. (9) 
To 

Comparison of coefficients of the independent variables e, ef, t, etc. between (8) and 
(9) shows that 

p/K = -(p/po)[ee_fJ(T-To)], 

(a;+p)/2G = (p/po)ef, 
T 

PoS = KfJee+ po f(CfT') dT', 
To 

Po TS = (po /p)a;ef· 

(10) 

(11) 

(12) 

(13) 

These constitutive equations must be considered as approximations, and It IS 
possible that for some materials (10) may be inadequate for large compression. 
The results do not depend in an essential way in the choice of pressure-volume 
relation and replacement of (10) by an empirical relation more suitable for given 
experimental data should be readily accommodated. Equation (13) is of particular 
interest since it indicates that entropy production, required to be positively the 
Clausius-Duhem inequality, is due entirely to plastic work. 

To determine the temperature at a point at any time it is necessary to know the 
stress and strain histories up to that time and these will depend in general on the 
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temperature history. It is clear from (12) and (13) that the temperature is given by 
the integration of 

(14) 

In the circumstances which pertain to the propagation of a plane wave certain sim­
plifications occur. Isochoric plastic deformation, symmetry and kinematics require 
that 

ef +e~ +e~ = 0, e2 = e2 = 0, el = e = in (Po/p), } 

e~ = e~ = -ef/2, e~ = e~ = e[/2' 
(15) 

We need, therefore, only consider one strain component el and its elastic and plastic 
parts, the remaining components being obtained if needed from (15). Similarly, we 
need only consider the stress uland the pressure p, the transverse stresses u 2 = U 3 

being obtained from Ul +2U2 = -3p. Thus, we now drop the subscripts 1, 2, 3 and 
use U to refer to uland e to refer to e 1 . 

Under conditions of uniaxial strain the plastic work takes the form 

(Po/p)uJ.i=1;(Po/p)(u+p)eP. (16) 

Furthermore, it is easy to show through (15) and (11) that the plastic strain can be 
written as 

eP = 2e/3-(po/p)(u+p)/2G. (17) 

Using the above relations, (14) for the temperature variation becomes 

Poct = -KPTB + (Po/p) (u +p)e-(3/8G) [{(Po/p)(u +p)}2J (18) 

Here, the symbol [ J' denotes derivative with respect to time of the enclosed quantity. 
We note first that if the plastic work is entirely neglected and the specific heat is 

assumed constant the temperature is given by 

T = To(p/Po)l" (19) 

where fJ. = KP/ Po C. The temperature rise is more generally given by the solution 
of the non-linear integral equation 

T • 8 

Po J C dT = -KP J T de + J (Po/p)(u+p) de 
Th fb £h 

-(3/8G){(po/p)(u + p)y +(3/8G){(Po/pJ(Uh + pJY. (20) 

Here, the subscript h refers to the Hugoniot elastic limit, i.e. the conditions at the 
precursor wavefront. Since the precursor is conventionally treated as an elastic 
discontinuity, no plastic deformation occurs, and the deviatoric stress and tem­
perature at the wavefront ' are, therefore, related to the density change through 
(11) and (19). These give 

(PO/Ph)(Uh + pJ = 2G In (PO/Ph)' (21) 

Th = TO(Ph/PO)l' . (22) 

In order to find an approximate solution to (20), we first note that the second 
term on the right-hand side of the equation is the total work of the deviatoric stress 
while the third term is that fraction of the work that is elastically recoverable. Com­
parison of the second term with the first requires that the deviatoric stress integrand be 
compared to a fictitious stress of magnitude PT times the bulk modulus. For common 
metals at room temperature, PT is a fraction in the range 0·004-0·025, and this 
fraction of the bulk modulus will be larger than the deviatoric stress except for very 
strong shocks in materials having the smallest values of P [see (KG, Fig. 3)]. If the 


